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Herding of sheep by dogs is a powerful example of one individual causing

many unwilling individuals to move in the same direction. Similar phenomena

are central to crowd control, cleaning the environment and other engineering

problems. Despite single dogs solving this ‘shepherding problem’ every day,

it remains unknown which algorithm they employ or whether a general algor-

ithm exists for shepherding. Here, we demonstrate such an algorithm, based on

adaptive switching between collecting the agents when they are too dispersed

and driving them once they are aggregated. Our algorithm reproduces key fea-

tures of empirical data collected from sheep–dog interactions and suggests new

ways in which robots can be designed to influence movements of living and

artificial agents.
1. Introduction
Determining how social organisms form and maintain swarm-like behaviour is

a major scientific challenge that has been taken up by biologists, physicists, math-

ematicians and engineers [1–4]. Some of the most striking examples of this

collective behaviour occur in the presence of threat; when flocks, shoals and

herds aggregate and evade their predators [1]. A sheep flock’s response to a herd-

ing dog is a classic example of what Hamilton [5] called the selfish herd theory,

which posits that aggregations result from individual efforts to reduce their

own predation risk by moving towards the centre of a group. Recent empirical

evidence supports this sheep anecdote, showing that sheep show a strong attrac-

tion towards the centre of their flock with the approach of a sheepdog [6].

However, the fact that the flock tightens does not tell us how the dog is able to

manoeuvre this aggregation and herd the flock towards a specific destination.

Many attempts have been made to gain an understanding of how a single

agent can gather and herd a group of other agents [7–16]. With such knowledge

comes numerous applications, for example in crowd control [17,18], cleaning up

the environment [19], herding of livestock [20], keeping animals away from sen-

sitive areas [21] and collecting/guiding groups of exploring robots [22]. Most

research has adopted a theoretical approach, and sought to model the interaction

of the agents based on attraction, repulsion and alignment models that are

common in studies of collective animal behaviour [2,4,23–27]. One agent, the

‘shepherd’, is then given a different set of rules from the rest of the flock, which

are repelled by the shepherd. In one class of models, the shepherd’s rules pre-

scribe a side-to-side movement behind the group while herding it towards the

target [7,28]. Such algorithms are appropriate for herding small groups (see

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.0719&domain=pdf&date_stamp=2014-08-27
mailto:strombom@math.uu.se
http://dx.doi.org/10.1098/rsif.2014.0719
http://dx.doi.org/10.1098/rsif.2014.0719
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org/


if dfurthest > f(N)

if d furthest
< f(N)

shepherd

GCM

target

furthest agent

shepherd

LCM
Ĉ
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Figure 1. Interaction rules for the agents and the shepherd. (a) The agents are attracted to the LCM of their n nearest neighbours (̂C), repelled from other agents
within a distance of ra ( R̂

a
) and repelled from the shepherd if it is within a distance of rs ( R̂

s
). The new heading of the focal agent H0 is a linear combination of the

three vectors Ĉ , R̂
a

and R̂
s
, weighted by the corresponding model parameters c, ra, rs, plus a small inertia term dĤ and a small noise term ee. (b) In each time

step, the shepherd does one out of three things depending on the position of the agents. If the shepherd is within 3ra from any agent, its speed is set to zero.
Otherwise, if all agents are within a distance f (N ) from the GCM of the agents, then the shepherd aims towards the driving position Pd directly behind the flock
relative to the target. Finally, if at least one sheep is further away than f (N ) from the GCM, then the shepherd aims for the collecting position Pc directly behind the
furthest away sheep relative to the GCM. (Online version in colour.)
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[16] for a review), but herding of larger groups (more than

40 individuals) typically requires multiple shepherds [28].

However, single sheep dogs can successfully herd flocks of

80 or more sheep both in their everyday work and in competi-

tive herding trials [29,30]. So, what are the sheepdogs doing

that the agent shepherds (or the flocking agents) are not?

Here, we propose a self-propelled particle model of local

attraction–repulsion type to model herding of a group of

interacting agents by one shepherd towards a predetermined

destination. We begin by investigating how the success of

the general algorithm depends on both group size and the

degree of locality in the agent interactions. Then we focus on

the shepherd dynamics that result from the application of the

algorithm. Finally, we compare the model against empirical

data obtained from real-life herding experiments with an

Australian sheepdog and merino sheep [6].
2. Results
The key features of our model are summarized below.

A detailed account may be found in the Model and methods.

Initially, N flocking agents are released at random positions

in the upper right quarter of an L � L square field and a shep-

herd released outside this quarter. Each agent aims to stay

away from the shepherd while remaining close to its n nearest

neighbours. This behaviour of being attracted to nearby

neighbours and repelled from potential threats is typical for

sheep and many other herding animals [5]. Figure 1a illus-

trates the rules governing the agents. If an agent is further

away than rs from the shepherd, it remains stationary,

except for occasional random movements. Regardless of dis-

tance to the shepherd, agents are repelled from other agents

at very short distances of less than ra and the unit vector R̂
a

indicates the direction of this local repulsion. If an agent is

within a distance rs from the shepherd, the agent is attracted

to the local centre of mass (LCM) of its n nearest neighbours,

in the direction of the unit vector Ĉ, and at the same time

repelled directly away from the shepherd in the direction
of R̂
s
. The new heading of the agent �H0 is then a linear com-

bination of these three vectors weighted by corresponding

model parameters ra, c, rs plus a weak inertia term dĤ and

a small noise term ee. �H0 is then normalized and the agent

moves a distance of d in this direction. As only the direction,

not the length, of �H0 is important each weight gives the rela-

tive strength of the corresponding term. For example, ra is the

relative strength of repulsion from other agents, c is the rela-

tive strength of attraction to other agents and rs is the relative

strength of repulsion from the shepherd.

The shepherd’s task is to collect and drive all agents down

to the lower left corner of the field. In order to solve this task,

we propose the following algorithm. If the shepherd is

within 3ra from any flocking agent, it does not move in this

time step. Otherwise, the shepherd does one of two things

depending on the position of the agents (figure 1b). If all

agents are within a distance f (N) from their global centre of

mass (GCM), then the shepherd aims towards the driving

position Pd directly behind the flock relative to the target. We

label this behaviour as ‘driving’. If at least one agent is further

away than f(N ) from the GCM, then the shepherd aims instead

for the collecting position Pc directly behind this furthest away

agent. We call this behaviour ‘collecting’. When collecting or

driving the shepherd moves a distance of ds.

Typical simulation results are shown in figure 2 and in the

electronic supplementary material, video 1. Owing to agents

being randomly placed at the upper right-hand quadrant of

the L � L field, the shepherd tends to initially collect the

agents until they are cohesive, at which point it starts to

drive the group. Once the agents are mobile, the shepherd

switches between driving and collecting modes until the

task is completed and the agents are delivered to the target

location in the lower left corner of the field. Visualizing the

trajectories of the shepherd and agents throughout the simu-

lations, we observe a side-to-side motion of the shepherd

behind the agents (figure 2). This motion is not explicitly

coded in our shepherd’s behaviours. Instead, it emerges as

a consequence of the shepherd switching between driving

and collecting.
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Figure 2. Simulation trajectories. The accumulated result of a simulation with 100 agents. The agents’ starting and end positions are marked with circles and their
trajectories throughout the simulation are thin lines. The trajectory of the shepherd (thick line) starts at (15,170) and goes directly for the agent furthest from the
GCM at coordinates (245,140). When the shepherd approaches the agents aggregate and are eventually cohesive enough to start herding when the shepherd is at
position (170,200). After a short straight driving phase, the shepherd is forced to go to one flank and then immediately the other to collect agents drifting off. This
process of driving and collecting then goes on until the GCM of the group of agents is within 10 units from (0,0). The box highlights the driving phase and
collecting phase which results in the side-to-side motion of the shepherd. (Online version in colour.)
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Figure 3. Proportion of successful shepherding events within 8000 time steps as a function of N [ [2, 150] and nearest neighbours n [ [1, N � 1]. We see that in
the global case n ¼ N 2 1 and down to roughly n ¼ 0.53N the algorithm is always successful. For N . 30, there is a transition region below the line n ¼ 0.53N and
above n � 3log(N ) where the probability of success drops from 1 to rare at a rate that is decreasing with N. Finally, in the region under the curve min(0.53N, 3log(N ))
success is rare and sporadic. The other parameters are the typical values listed in table 1 except for rs ¼ 45. (Online version in colour.)
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To evaluate the performance of the shepherding algorithm,

we investigate how often it completes the task successfully

within 8000 time steps for groups of N [ [2, 150] agents. In

particular, we explore how the number of nearest neighbours

n [ [1, N � 1] affects the performance of the algorithm.

Figure 3 shows the proportion of successful shepherding

events as a function of N and n over 50 simulations. In the

global case n ¼ N 2 1 and down to n ¼ 0.53N, the algorithm

is always successful. For N . 30, there is a transition region

below the line n ¼ 0.53N and above n � 3log(N) where the

probability of success drops from 1 to rare. In the region

under the curve min(0.53N, 3log(N)) success is very rare.

We tested whether our model matched data collected

using a back-mounted global positioning system (GPS)

attached to N ¼ 46 sheep and a working farm dog [6,31].

Electronic supplementary material, video 2, shows the data
collected in the three experiments. For each herding event,

the following can be observed: first, the dog approaches the

sheep, and the sheep aggregate. The dog then positions

itself behind the flock relative to the end position and starts

driving it forward. As the flock is driven forward, individuals

at one or both flanks begin to drift away from the overall

flock centre of mass. The dog corrects for this by approaching

the flank sheep and positions itself behind the sheep relative

to the centre of the flock. The dog then returns to herding the

flock towards the target.

To quantitatively compare the model with the experimen-

tal data, we calculate the projections of the shepherd vector �S
onto the centroid vector v1 and the furthest agent vector �v2,

respectively (figure 4a). These projections parv1
�S and p�v2

�S pro-

vide us with information about where the shepherd is relative

to the centre of mass of the flock. If p�v1
�S . 0:95, the shepherd

http://rsif.royalsocietypublishing.org/
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Figure 4. Projections used to define the driving and collecting modes and how the proportion of time spent driving and collecting depends on the number of
agents. (a) How the centroid vector v1, the furthest agent vector v2 and shepherd vector S are set up. Three measurements related to these vectors will be used in
comparing the model to the sheep data (figure 5). The projection of S on v1 denoted by pv1 S, the projection of S on v2 denoted by pv2 S and the length of S.
(b) Proportion of time the shepherd spends driving (pv1 S . 0:95) as a function of group size (N ) in the global case (n ¼ N 2 1) over 100 simulations.
(c) Proportion of time spent collecting (jpv2 Sj . 0:95) as a function of group size (N ) in the global case over 100 simulations. The other parameters are
the typical values listed in table 1. (Online version in colour.)
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is directly behind the flock relative to target. If p�v2
�S . 0:95,

the shepherd is on the same side of the flock as the furthest

agent and if p�v2
�S , �0:95, it is on the opposite side. We cal-

culate these projections in each time step of the simulation

and in the data and present distributions showing the pro-

portion of time steps the shepherd spent in a certain

position. These measures capture both the driving mode,

where the shepherd is directly behind or in front of the

flock relative to the target (i.e. p�v1
�S . 0:95), and the collecting

mode when the shepherd is directly behind, or on the

opposite side of the flock, relative to the furthest agent

(i.e. jp�v2
�Sj . 0:95). Figure 4b,c shows how the proportion of

time driving and collecting depends on the number of

agents in simulations in the global case. The time the shep-

herd spends collecting agents increases until N ¼ 40, and

then decreases linearly (figure 4c), with a corresponding

increase in time spent driving (figure 4b) as N increases

and the flock is less likely to fission.

Figure 5a shows the minimum, mean and maximum

distance between the shepherd and the centre of mass of

the agents throughout the three trials. We compare this

with the result of simulations in which the parameters are

set to mimic the behaviour of real sheep and sheepdogs

(figure 5b; electronic supplementary material, video 3). The

overall shapes of the distributions match and both include

the peak at around 10 m. Figure 5c shows that the proportion

of time the dog spends in the driving and collecting modes is

consistent with the shepherd behaviour in simulations. The

box plot shows the result of 100 simulations and the results

of each of the three trials are marked with dots. The full dis-

tributions of the centroid and furthest sheep projection values

in simulations and in the data are presented in the electronic

supplementary material, figure S1. We see that the projection

on the centroid vector (p�v1
�S) is peaked at 1, indicating a pos-

ition behind the flock (electronic supplementary material,

figure S1a,c). The distribution of the projection on the furthest

sheep vector (p�v2
�S) has a bimodal structure, peaking at 21

and 1, which indicates a position either on the side of the

flock with the furthest sheep, or on the opposite side of

the flock (electronic supplementary material, figure S1b,d).

This results from both the dog’s positioning itself to collect
the furthest sheep, and the resulting attempted ‘escape’ of

sheep on the other side of the flock. We also investigated

how the distance from the initial release site to the target

affected success rate and time to completion. In each simu-

lation, 46 agents were initially positioned randomly within a

50 � 50 square centred at the point (lþ 25
ffiffiffi
2
p

, lþ 25
ffiffiffi
2
p

). We

performed 100 simulations for each value of distance to

target l, with l increasing from 10 to 500, and the time to com-

pletion was measured. The result is shown in the electronic

supplementary material, figure S2, and we see that the success

rate is unaffected and that the average time to completion

increases linearly with distance to target.

Although our model is consistent with the data and

allows herding of the 46 sheep used in the experiment, our

algorithm is not guaranteed to succeed when n , N/2 and

often fails when n� N. One way of overcoming this problem

and potentially allow the shepherd to deal with groups of

arbitrary size is to programme it to sequentially bring in

subgroups of a size it can handle. To test this idea, we

implemented a shepherd that employs the algorithm on the

LCM of the ns nearest neighbours rather than the GCM of

all agents. Initial investigations showed that the shepherd

can get stuck in the centre of mass of several symmetrically

distributed subgroups and is thereby unable to complete

the task. To counteract this problem, we also introduced a

blind zone behind the dog specified by an angle b [32] (see

the Models and methods for details). This modification

improved the situation. In 56 out of 100 simulation runs a

shepherd acting on its ns ¼ 20 nearest neighbours success-

fully brought in groups of N ¼ 201 agents with n ¼ 20.

Electronic supplementary material, video 4, shows six such

simulations. In the first three simulations, the shepherd is

successful, often bringing in groups of more than ns ¼ 20

agents at a time. However, the last three simulations show

typical situations where the shepherd gets stuck and fails to

complete the task. In these runs, the shepherd is typically

trapped between two or more clusters. Three quantitative

measures of the local shepherd’s performance as a function

of number of agents (N ) are presented in figure 6. For each

N, we ran 100 simulations and calculated the minimum

time to completion (figure 6a), proportion of successful

http://rsif.royalsocietypublishing.org/
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Figure 5. Comparison of the model with data for 46 sheep. (a) The proportion of time the dog spent at a certain distance from the GCM of the sheep (length of
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function of number of agents. (b) The proportion of success. (c) The average proportion of agents collected as a function of number of agents. The number of nearest
neighbours was n ¼ 20 and the other parameters as listed in table 1 except L ¼ 300, tmax ¼ 40 000, ra ¼ 3 and h ¼ 0.3. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140719

5

 on November 14, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
herding events (figure 6b) and finally the average proportion

of agents collected over the 100 simulations (figure 6c). Mini-

mum time to completion suggests that in the optimal case, the

time to completion increases approximately linearly with
number of agents (minimum completion time¼ 20N þ 630).

The proportion of successful trials decreases from 1 for small

number of agents down to approximately 0.5 for N ¼ 200.

However, even in the cases where the shepherd ultimately

http://rsif.royalsocietypublishing.org/
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fails, it tends to bring in a majority of agents before. The aver-

age number of agents collected decreases with number of

agents, but slowly, and even in simulations with 200 agents

the shepherd manages to bring in 80% of the total number

of agents over 100 simulations.
ietypublishing.org
J.R.Soc.Interface

11:20140719
3. Discussion
The model we have presented offers a solution to the shepherd-

ing problem. Using a set of simple heuristics, we show that a

shepherd can herd autonomous, interacting agents towards a

target destination. The shepherd heuristics are based on adap-

tive switching between collecting agents when they are too

dispersed and driving them once they are aggregated. These

rules function to (i) reduce the probability that the group

splits and (ii) allow the shepherd to keep the group moving

towards a target location. A side-to-side motion of the shepherd

also emerges as a consequence of these rules, a feature which

has previously been hard-coded into shepherd movement

rules in other models to improve efficiency [7,16,28].

There are a number of aspects of both the shepherd and the

agent behaviour in our model that are consistent with real

herding events involving sheep and a sheepdog (figure 5).

Instead of weaving side-to-side behind a flock at some fre-

quency, our shepherding algorithm results in the shepherd

driving the group when it is cohesive and actively seeking

and collecting those that drift out at the edges. This is exactly

the type of behaviour that we see in our sheep–sheepdog

datasets. The visual similarities between the model and the

data (electronic supplementary material, videos 2 and 3) are

corroborated by quantitative comparisons of the data and

our model (figure 5).

The plausibility of our model relies upon two assumptions.

The first is that the dog can estimate the space between the

sheep, irrespective of their metric distance. This seems reason-

able given the border collie, a classic sheepdog breed, is said

to use a direct stare to herd the flock [29], and similar heuris-

tics-based models have proved useful in understanding the

behaviour of pedestrians in crowds [33]. Nevertheless, it

would be useful to gather further evidence using, for example,

eye-tracking systems to determine shifts in the dog’s visual

attention. Also, in our field experiments, we used an experi-

enced dog which was given minimal direction. It would be

interesting to conduct experiments with multiple dogs and

owners of dogs of varied abilities; this way, we would be

begin to investigate the role of task familiarity and learning in

herding performance. Our second assumption is that agents

are attracted to the centre of mass of at least half of the total

number of agents (figure 3). At larger group sizes, this means

that agents interact with many neighbours, which is at odds

with other theoretical models of flocking in which agents tend

to interact locally with a small number of individuals [16]. It

is nonetheless consistent with a sheep flock’s initial responses

to the approach of a herding sheepdog [6], and with empirical

data on bird flocking in which a topological interaction is

required to maintain flock cohesion under perturbations [34].

Although our algorithm is consistent with the data,

and unlike previous models [16] allows herding of large

groups, it is not guaranteed to succeed when agents interact

with less than half of the total group size. Under these con-

ditions, the group of agents is likely to split into two or

more stable subgroups. As our intention was to create a
model that was not only applicable to the sheep–sheepdog

scenario, but also to similar phenomena such as cleaning

the environment, we augmented our basic shepherding

algorithm with a mechanism to allow the shepherd to

detect that the group has split and then bring each subgroup

in sequentially. To do this, we employed the same shepherd-

ing algorithm on the LCM of nearby agents, rather than on

the GCM (note that this might also be applicable to the sheep-

dog at large group sizes, because it would not be able to see

the entire flock, but we do not have data on this). Merging of

separated agents has been discussed in [8] but the approach

of splitting the task into one for each subgroup is, as far as

we know, new. However, at present this extended local

shepherd algorithm is not always successful, rather it has a

success rate of about 80% as a result of the shepherd getting

stuck between collecting two subgroups of agents. In practice

(e.g. with a herding dog or herding robot), an instruction

could be given which could rectify this.

Our approach should support efficient designs for herding

autonomous, interacting agents in a variety of contexts.

Obvious cases are robot-assisted herding of livestock [20],

and keeping animals away from sensitive areas [21], but appli-

cations range from control of flocking robots to cleaning up of

environments and human crowd control. In the case of flocks

of mobile robots, for example, engineers have designed virtual

or explicit leaders to guide groups to target headings, or else

assumed that a heading is sensed by the whole group [22].

A simpler alternative is to shepherd such groups, using the

algorithm which we have described here. This would be

particularly useful for guiding robots back to a base after

completion of some task. In the case of cleaning up of environ-

ments, multi-robot systems have been proposed to help clean

up marine oil spills, and specifically prevent spills from spread-

ing wider [35]. It would be fascinating to explore how our

algorithms performed in this task and in other scenarios

where fluids or granular media need collecting/corralling.

The algorithm may also be applied to situations where crowds

of people have little information and there is a tendency to imi-

tate the behaviour of each other. This is especially common

where visibility is poor, and people need to escape from a

smoky room [36]. In such situations, it may be possible to

herd the movements of people to exits using a shepherd robot.

Finally, returning to biology, our results also inform our

understanding of animal collective behaviour in the presence

of threat [37]. It is tempting to envisage a similar set of rules to

those we describe for our shepherd guiding the behaviour of

predators attacking flocking prey. While the same ability to esti-

mate space between prey might be important to understanding

and building a mechanistic understanding of predator move-

ment rules, these rules will not be the same as those used

here. The goal of the shepherd (and our sheepdog example) is

to keep the flock together and manoeuvre it as a single unit; a

predator’s goal is typically the opposite, namely to break up

aggregations and isolate individuals as potential targets [38].
4. Model and methods
4.1. Model
Initially, N agents are randomly positioned in the upper right

quarter of an L � L square and a shepherd released in the

lower left quarter. The square is not enclosed so the agents

and shepherd may leave it at a later time. Denote the position

http://rsif.royalsocietypublishing.org/


Table 1. The parameters of the model. Notation, description and typical values used in simulations.

parameter description typical values

L side length of initial square field 150 m

agent parameters

N total number of agents 1 2 201

n number of nearest neighbours 1 2 200

rs shepherd detection distance 65 m

ra agent to agent interaction distance 2 m

ra relative strength of repulsion from other agents 2

c relative strength of attraction to the n nearest neighbours 1.05

rs relative strength of repulsion from the shepherd 1

h relative strength of proceeding in the previous direction 0.5

e relative strength of angular noise 0.3

d agent displacement per time step 1 m ts21

p probability of moving per time step while grazing 0.05

shepherd parameters

ds shepherd displacement per time step 1.5 m ts21

Pd driving position ra

ffiffiffi
N
p

m behind the flock

Pc collecting position ra m behind the furthest agent

e relative strength of angular noise 0.3

for local shepherd

ns number of nearest agents the local shepherd operates on 20

b blind angle behind the shepherd p/2
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of the shepherd by �S and the position of the ith agent by �Ai. If

an agent is further away than rs from the shepherd it grazes.

That is, it is typically stationary, but exhibits small random

movements. If the distance to the shepherd is shorter than

rs, then each agent i will be repelled directly away from it

in the direction of �Rs
i ¼ �Ai��S and at the same time will be

attracted to the centre of mass of its n nearest neighbours

ðL �CMÞi in the direction of �Ci ¼ L �CMi� �Ai. Agents are also

locally repelled from each other, so that if two or more

agents are within a distance of ra of each other there will be

a repulsive force acting to separate them. More precisely, if

agent i has k neighbours within a distance of ra at positions
�A1 , . . . , �Ak, the repulsive force on i is defined by

�Ra
i ¼

Xk

j¼1

1

j �Ai� �Aj j
( �Ai� �Aj ): (4:1)

The heading agent i will take in the next time step �H0i is a

linear combination of these forces (normalized) plus inertia

Ĥi and an error term ê (see figure 1), which can be described

as follows:

�H0i ¼ h Ĥiþc Ĉtþra R̂
a
i þrs R̂

s
i þeêi , (4:2)

where the weights are chosen so that ra . c . rs . h. The

reasons for this inequality are that agent-to-agent repulsion

ra must be dominating in order for any group size to be

maintained and that in the real world sheep tend to aggregate

rather than immediately disperse in the presence of a dog [6].

Therefore, we assume that local attraction between agents is

stronger than repulsion from the shepherd c . rs. Finally,

the tendency to proceed in the previous direction h is
included to prevent sharp turns and smoothen trajectories and

should be subordinate to all interactions. The typical values for

these parameters in simulations are ra ¼ 2, c¼ 1.05, rs¼ 1 and

h¼ 0.5. Agent i will then move a distance of d in this direction
�H0i and its new position is given by

�A0i ¼ �AiþdĤ0i : (4:3)

See table 1 for an overview of the parameters of the model.

The shepherd’s task is to collect all agents into one flock

and herd them to the lower left corner of the L � L square.

When the centre of mass of the flock (GCM) is within a cer-

tain distance from the origin, the shepherding task is

completed. While shepherding the shepherd decides on one

of two possible moves, collect or herd, at each time step,

which depends on whether all agents are within a distance

of f (N ) from the GCM (see figure 2). f(N) ¼ ra

ffiffiffiffi
N
p

would

require the flock to be perfectly circular and so to allow for

asymmetry of the flock, we take f(N ) ¼ raN2/3. If all agents

are not within f (N ), the shepherd moves towards the point

Pc to collect the agent furthest from the GCM at position Af.

If the flock is cohesive, that is, all agents are within f (N ), the

shepherd positions itself at Pd to drive the flock. The shep-

herd attempts to go in a straight line towards these points

but if it gets within 3ra of an agent, its speed ds is set to

0. 3ra was selected because of our observations of our sheep-

dog in the field, where the dog would rarely approach the

flock at close range (since this causes the flock to fission).

The shepherd experiences the same noise as the agents eê;

this noise is critical for resolving dead-lock situations. The

shepherd will repeat this until the GCM is within a certain

distance from the origin.

http://rsif.royalsocietypublishing.org/
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4.2. Local shepherd
The task of the local shepherd is to complete the original task

of delivering all N agents down to the lower left corner by

sequentially bringing in subgroups of a size it can handle.

It starts by going to pick up the first subgroup, which it

brings in. The shepherd repeats this process until all agents

are brought in. We denote the number of agents that have

not been brought in yet by Nt. The agents behave exactly like

in the original model but the shepherd now employs the algor-

ithm on the LCM of the min(Nt, ns) nearest agents within visual

range (LCMt) instead of the GCM of all agents. The visual range

of the shepherd is limited by the inclusion of a blind zone

behind it relative to the detected LCMt specified by the angle

b. The reason for including this blind zone was to overcome

the problem of the shepherd being encircled by subgroups of

agents and from then on unable to move. Electronic sup-

plementary material, video 4, shows both successful and

unsuccessful trials with a local shepherd using ns ¼ 20 and

N ¼ 201 agents with n ¼ 20 and the other parameters as

listed in table 1 except L ¼ 300, tmax ¼ 40 000, ra ¼ 3 and h ¼
0.3. The movie was constructed by recording every 100th

frame of the simulations.

4.3. Sheep flock and herding dog
A flock of 46 female merino sheep (Ovis aries) aged 3 years

and with a mean+ s.e.m. body weight of 52+ 6 kg was

used. Throughout the experiments, the sheep were housed

in a 5 ha field and given ad libitum access to hay and water

on all days. A trained female Australian Kelpie working

farm dog was used to herd the sheep. All trials were under-

taken in South Australia in March 2010. For each trial, the dog

was directed verbally to herd the flock to the gate of the field,

with minimal guidance (given the command ‘bring them

home’). One herding event was recorded per day.
4.4. Sheep and dog movement data
All sheep and the sheepdog were fitted with a ‘data-logger’

during all herding events. The loggers are an in-house

design and comprise a GPS module capable of recording

single frequency L1 raw range data at 10 Hz (uBlox LEA-4T

GPS module), a GPS patch antenna, MSP430 microcontroller

and a rechargeable 2200 mAh lithium polymer battery. The

logger was set to record raw pseudo-range GPS data at

1 Hz, which were saved to a micro-SD card. These com-

ponents were mounted and housed in a sealable plastic box

and attached to a standard sheep harness (Rurtec,

Hamilton, New Zealand), or dog harness purchased from a

local store. The logger and harness had a total mass of

530 g (150 g data logger, 381 g harness), which was 1% of

mean sheep body mass, and has been shown not significantly

to alter key locomotion parameters of sheep within this man-

aged population [6]. A Novatel FlexPak G2L/OEM4 GPS

base station was also mounted with a clear sky view on top

of a grain silo at the location (approx. 6 m above ground

level) providing synchronized measurements that were

used to improve accuracy in post-processing. GPS data for

loggers and base station were post-processed in differential

mode using WAYPOINT GRAF-NAV v. 8.10 (www.novatel.com).

This approach allows carrier phase ambiguity resolution/a

fixed integer kinematic solution and an absolute positional

accuracy of 10–20 cm. Much of the error in positional accu-

racy was consistent across loggers and Gaussian in nature.

For further details on post-processing, see [6,31]. Data were

then analysed using Matlab v. R2010.
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